Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
International Journal of Polymer Science ; 2023, 2023.
Article in English | Scopus | ID: covidwho-2262644

ABSTRACT

In the present scenario like COVID-19 pandemic, to maintain physical distance, the gait-based biometric is a must. Human gait identification is a very difficult process, but it is a suitable distance biometric that also gives good results at low resolution conditions even with face features that are not clear. This study describes the construction of a smart carpet that measures ground response force (GRF) and spatio-temporal gait parameters (STGP) using a polymer optical fiber sensor (POFS). The suggested carpet contains two light detection units for acquiring signals. Each unit obtains response from 10 nearby sensors. There are 20 intensity deviation sensors on a fiber. Light-emitting diodes (LED) are triggered successively, using the multiplexing approach that is being employed. Multiplexing is dependent on coupling among the LED and POFS sections. Results of walking experiments performed on the smart carpet suggested that certain parameters, including step length, stride length, cadence, and stance time, might be used to estimate the GRF and STGP. The results enable the detection of gait, including the swing phase, stance, stance length, and double supporting periods. The suggested carpet is dependable, reasonably priced equipment for gait acquisition in a variety of applications. Using the sensor data, gait recognition is performed using genetic algorithm (GA) and particle swarm optimization (PSO) technique. GA- and PSO-based gait template analyses are performed to extract the features with respect to the gait signals obtained from polymer optical gait sensors (POGS). The techniques used for classification of the obtained signals are random forest (RF) and support vector machine (SVM). The accuracy, sensitivity, and specificity results are obtained using SVM classifier and RF classifier. The results obtained using both classifiers are compared. © 2023 Mamidipaka Hema et al.

2.
European Journal of Cardiovascular Nursing ; 20:33-33, 2021.
Article in English | Web of Science | ID: covidwho-1537552
3.
Journal of Health and Allied Sciences Nu ; : 10, 2021.
Article in English | Web of Science | ID: covidwho-1238045

ABSTRACT

Introduction Coronavirus disease 2019 (COVID-19) is an emerging infection and quickly disseminated around the world. This article studies the epidemiology and early transmission dynamics of COVID-19 in Karnataka, which would be useful for effective epidemic management and policy formulation. Materials and Methods All COVID-19 cases reported in the state of Karnataka, India, till June 12, 2020, are included in the study. The epidemiology and transmission dynamics of COVID-19 in Karnataka is studied through descriptive statistical analysis. Results The findings illustrate a gender-, age-, and region-based disparity in the susceptibility and fatality. There appears to be a male preponderance in the susceptibility, but a female preponderance in fatality. It is also found that the adults are more susceptible to the infection, while the elderly have the risk of high fatality. Further, infected individuals in the region with urbanization have a higher risk of fatality than other regions. The study shows that the chances of recovery for females are lower than males, and further, the chances of recovery are positively related to the age of the infected person. The chances of recovery are higher if the infected individual is younger and they diminish if the individual is older. The study also explores that the chances of recovery are affected by the patient's geographical location. It is also noted that individuals who returned from foreign travel have better chances of recovery than the locally transmitted individuals. Conclusion Though the risk of susceptibility to COVID-19 infection is equal to all, the burden of getting infected and the burden of fatality is unequally distributed among different demographic categories. To manage the contagious spread of epidemic, to reduce fatality, and to increase the chances of recovery, targeted policy actions are suggested to benefit the vulnerable demographic categories.

SELECTION OF CITATIONS
SEARCH DETAIL